

mdtmFTP

Installation & Configuration Manual

➢ Docker Release

Version 1.0.3

Fermilab

Jan 2019

 2

About

To address challenges in high performance data movement for large-scale science,
the Fermilab network research group has developed mdtmFTP, a high-performance
data transfer tool to optimize data transfer on multicore platforms. mdtmFTP has a

number of advanced features.

• First, it adopts a pipelined I/O design. Data transfer tasks are carried out in a

pipelined manner across multiple cores. Dedicated threads are spawned to perform

network and disk I/O operations in parallel.
• Second, mdtmFTP uses multicore-aware data transfer middleware (MDTM) to

schedule an optimal core for each thread, based on system configuration, to

optimize throughput across the underlying multicore core platform.
• Third, mdtmFTP implements a large virtual file mechanism to efficiently handle

lots-of-small-files (LOSF) situations.
• Finally, mdtmFTP unitizes optimization mechanisms such as zero copy,

asynchronous I/O, batch processing, and pre-allocated buffer pools, to maximize

performance.

This document describes the installation and basic use of mdtmFTP.

The mdtmFTP project website: http://mdtm.fnal.gov

The mdtmFTP docker release: https://hub.docker.com/r/wenji/mdtm/

For mdtmFTP technical details, please refer to paper:

Liang Zhang, Wenji Wu, Phil DeMar, Eric Pouyoul:

mdtmFTP and its evaluation on ESNET SDN testbed. Future Generation Comp.

Syst. 79: 199-204 (2018)

Contacts

Wenji Wu (wenji@fnal.gov)

Liang Zhang (liangz@fnal.gov)

Phil DeMar (demar@fnal.gov)

Sajith Sasidharan (sajith@fnal.gov)

Intended Audience

This manual is intended for users and system administrators responsible for installing,

running, and managing DTNs.

The manual assumes familiarity with multicore and DTN concepts.

mailto:wenji@fnal.gov
mailto:liangz@fnal.gov)
mailto:demar@fnal.gov
mailto:sajith@fnal.gov

 3

 4

Acknowledgements

mdtmFTP uses several Globus modules (http://toolkit..globus.org/toolkit) for rapid

prototyping. We sincerely thank Globus folks at Argonne National Laboratory and

University of Chicago.

Here is a list of Globus modules that mdtmFTP uses:

• GridFTP protocol module

• Globus xio module

• Globus security module

• Globus user interface

http://toolkit..globus.org/toolkit)

 5

Section 1. System level requirements

1) System must have installed Docker (version 1.10 +). The Docker project website is

available at http://www.docker.com. For some Linux distributions, you can install

Docker packages through yum or apt-get.

2) Download and install mdtmFTP Docker package

o The mdtmFTP Docker repository: https://hub.docker.com/r/wenji/mdtm

o Download mdtmFTP container:

“docker pull docker.io/wenji/mdtm:mdtmFTP”

o Run “docker images” to check the container that you have pulled

http://www.docker.com/
https://hub.docker.com/r/wenji/mdtm

 6

Section 2. The mdtmFTP Docker Container

1) First start a mdtmFTP docker container by running

“docker run –ti --net=host docker.io/wenji/mdtm:mdtmFTP”

This command will start the mdtmFTP container interactively. You can login the

container to launch applications, or edit/configure files.

• In the container, mdtmFTP files are located at the following folders:

o mdtmFTP client folder @ “/home/mdtmftp_client”

o mdtm-ftp-client, the mdtmFTP client executable

o mdtmconfig.xml, configures a mdtmFTP client’s MDTM-related

parameters

o mdtmFTP server folder @ “/home/mdtmftp_server”

o mdtm-ftp-server, the mdtmFTP server executable

o mdtmconfig.xml, configures a mdtmFTP server’s MDTM-related

parameters

o server.conf, configures a mdtmFTP server operation parameters

o passfile, stores a mdtmFTP server’s user/password pairs

• mdtmFTP uses Globus security. In the mdtmFTP container, there is a globus tool

folder located at “/home/globus_tools/”.

o Users can use globus-gridftp-passwd @ “/home/globus_tools/” to generate

user/password pairs for passfile @ “/home/mdtmftp_server”

 7

Section 3. Configuring and Running mdtmFTP server

Step 1. Configuring mdtmFTP server CONFIG files

Running mdtmFTP server requires properly configuring two files – mdtmconfig.xml and

server.conf.

1) First start a mdtmFTP docker container by running

“docker run –ti --net=host docker.io/wenji/mdtm:mdtmFTP”

This command will start the mdtmFTP container interactively. You can login the

container to edit/configure files.

2) In the container, following the instructions in Appendix 1 and 2 to edit mdtmconfig.xml

and server.conf .

3) Exit the mdtmFTP container.

4) In the host system, run “docker ps –a” to find container_id for the container that you

just exit.

5) In the host system, save the container changes by running “docker commit container_id

xxx:yyy”

Note: xxx is the local repository name, yyy is the tag name for the customized

mdtmFTP container.

 8

Step 2. Managing users for mdtmFTP server in Docker container environment

In standard environment (non-docker environment), when a user transfers files from/to a

mdtmFTP server, he must have an account on the system that mdtmFTP runs.

When mdtmFTP runs in Docker container environment, two sets of user account will be

involved – user account @ container and user account @ host. When a user is created into

a container, this user may not be known for host machines. At this moment, if a host volume

is mounted into this container, there may be “permission denied” issues.

To avoid such “permission denied” issues, we adopt 1-to-1 mapping policy between user

account @ container and user account @ host:

• For each user created in a container, we can set a dedicated uid.

• For each group created in a container, we can set a dedicated gid.

• On host, we can create a “docker” user with those dedicated uid/gid, and manage

permission.

Here is an example on how to setup an account in container and in host.

1) Start the previously saved mdtmFTP docker container by running

“docker run –ti --net=host xxx:yyy”

This command will start the mdtmFTP container interactively.

2) In the container, add a user “mdtmftp” and a group “mdtmftp-group”. We will set

dedicated uid/gid.

groupadd mdtmftp-group –g 2000

useradd -u 2000 -d /home/mdtmftp --create-home --shell /bin/bash mdtmftp

usermod –g mdtmftp-group mdtmftp

3) Exit the mdtmFTP container.

4) In the host system, run “docker ps –a” to find container_id for the container that you

just exit.

5) In the host system, save the container changes by running “docker commit container_id

xxx:yyy”

6) In the host system, we create user “mdtmftp” and group “mdtmftp-group” with

dedicated uid/gid.

groupadd mdtmftp-group –g 2000

useradd -u 2000 -d /home/mdtmftp --create-home --shell /bin/bash mdtmftp

usermod -g mdtmftp-group mdtmftp

 9

 10

Step 3. Mounting host folders/directories to the mdtmFTP container

Data transfer requires folders/directories to hold and save data. In Docker container

environment, we do not need to create large folders/directories in a container. Instead, we

can mount host directories/folders to the container. Because we implement a 1-to-1

mapping policy between user account @ container and user account @ host, we can simply

mount host folders/directories to the container.

A user can add a data volume (i.e., folder/directory) to a container using the –v flag with

the docker run command. A user can use the –v multiple times to mount multiple data

volumes.

For example, the following command with start the mdtmFTP container, and mount host

folder /storage_x to container folder /storage_y

docker run -ti -v /storage_x:/storage_y --net=host xxx:yyy

Note: xxx:yyy is the mdtmFTP container that is customized to your DTN system.

 11

Step 4. Managing passfile for mdtmFTP server

mdtmFTP uses Globus security. In the mdtmFTP container, there is a globus tool folder

located at “/home/globus_tools/”.

System admin can use globus-gridftp-passwd @ “/home/globus_tools/” to generate

user/password pairs.

Here is an example on how to generate a user/password pair for user mdtmftp and add it to

“/home/mdtmftp_server/passfile” in the container.

1) Start the previously saved mdtmFTP docker container by running

“docker run –ti --net=host xxx:yyy”

This command will start the mdtmFTP container interactively.

2) In the container, switch to mdtmftp by running “su mdtmftp”

3) In the container, generate the user/password pair by running

“$/home/globus_tools/globus-gridftp-password >> /home/mdtmftp/temp”

4) In the container, “$cat /home/mdtmftp/temp”

mdtmftp:R/BH1rjpOagsk:2000:2000::/home/mdtmftp:/bin/bash

5) In the container, exit the “mdtmftp” session by running “$exit”.

6) In the container, “#cat /home/mdtmftp/temp >> /home/mdtmftp_server/passfile”.

7) Exit the mdtmFTP container.

8) In the host system, run “#docker ps –a” to find container_id for the container that you

just exit.

9) In the host system, save the container changes by running “#docker commit

container_id xxx:yyy”.

10) Send the password to the corresponding user.

Note: if you choose to use GSI certificate security to authenticate users, there is no need to

create a password file. You may want to follow the instructions at

http://grid.ncsa.illinois.edu/ssh/ to configure GSI security.

http://grid.ncsa.illinois.edu/ssh/

 12

 13

Step 5. Running a mdtmFTP server in Docker container environment

• Running a mdtmFTP server as root

docker run -v /storage_x:/storage_y --net=host --privileged --security-opt seccomp:unconfined
xxx:yyy /bin/bash -c "cd /home/mdtmftp_server; ./mdtm-ftp-server -data-interface 131.225.2.29 -

password-file passfile -p 5001 -c server.conf" &

This command starts a mdtmFTP server as root.

o -v /storage_x:/storage_y mounts host folder /storage_x to container folder

/storage_y.

o --net=host uses the host’s network stack inside the container.
o --privileged runs docker with privilege
o --security-opt seccomp:unconfined is required for Docker 1.10 and 1.11 to add

capabilities.
o xxx:yyy is mdtmFTP container name.
o /bin/bash -c "cd /home/mdtmftp_server; ./mdtm-ftp-server -data-interface

131.225.2.29 -password-file passfile -p 5001 -c server.conf" executes several

commands in the container
▪ cd /home/mdtmftp_server enters mdtmFTP server working directory
▪ ./mdtm-ftp-server -data-interface 131.225.2.29 -password-file passfile -p

5001 -c server.conf" starts a mdtmFTP server

Please refer to Appendix 3 for mdtmFTP server command syntax

• Running a mdtmFTP server as non-root

For docker 1.10 and docker 1.11

docker run -u mdtmftp -v /storage_x:/storage_y --cap-add=IPC_LOCK --cap-add=SYS_NICE --
cap-add=SYS_ADMIN –cap-add=SYS_RESOURCES --net=host --security-opt

seccomp:unconfined xxx:yyy /bin/bash -c "cd /home/mdtmftp_server; ./mdtm-ftp-server -data-
interface 131.225.2.29 -password-file passfile -p 5001 -c server.conf" &

This command starts a mdtmFTP server as non-root.

o –u mdtmftp runs the container as user mdtmftp

o -v /storage_x:/storage_y mounts host folder /storage_x to container folder

/storage_y.

o --net=host uses the host’s network stack inside the container.
o --cap-add=IPC_LOCK adds Linux capability IPC_LOCK to the container. mdtmFTP

server requires this capability to lock memory when running as non-root.
o --cap-add=SYS_NICE adds Linux capability SYS_NICE to the container. mdtmFTP

server requires this capability to bind I/O threads when running as non-root.
o –cap-add=SYS_ADMIN adds Linux capability SYS_ADMIN to the container.

mdtmFTP server requires this capability to allocate pipes for the splice feature when

running as non-root.

 14

o –cap-add=SYS_RESOURCE adds Linux capability SYS_RESOURCE to the

container. mdtmFTP server requires this capability to increase pipe capacity for the

splice feature when running as non-root.
o --security-opt seccomp:unconfined is required for Docker 1.10 and 1.11 to add

capabilities.
o xxx:yyy is mdtmFTP container name.
o /bin/bash -c "cd /home/mdtmftp_server; ./mdtm-ftp-server -data-interface

131.225.2.29 -password-file passfile -p 5001 -c server.conf" executes several

commands in the container
▪ cd /home/mdtmftp_server enters mdtmFTP server working directory
▪ ./mdtm-ftp-server -data-interface 131.225.2.29 -password-file passfile -p 5001

-c server.conf" starts a mdtmFTP server

For docker 1.12+

docker run -u mdtmftp -v /storage_x:/storage_y --cap-add=IPC_LOCK --cap-add=SYS_NICE --

cap-add=SYS_ADMIN –cap-add=SYS_RESOURCES --net=host xxx:yyy /bin/bash -c “cd
/home/mdtmftp_server; ./mdtm-ftp-server -data-interface 131.225.2.29 -password-file passfile -p

5001 -c server.conf” &

This command starts a mdtmFTP server as non-root.

o –u mdtmftp runs the container as user mdtmftp

o -v /storage_x:/storage_y mounts host folder /storage_x to container folder

/storage_y.

o --net=host uses the host’s network stack inside the container.
o --cap-add=IPC_LOCK adds Linux capability IPC_LOCK to the container. mdtmFTP

server requires this capability to lock memory when running as non-root.
o --cap-add=SYS_NICE adds Linux capability SYS_NICE to the container. mdtmFTP

server requires this capability to bind I/O threads when running as non-root.
o –cap-add=SYS_ADMIN adds Linux capability SYS_ADMIN to the container.

mdtmFTP server requires this capability to allocate pipes for the splice feature when

running as non-root.
o –cap-add=SYS_RESOURCE adds Linux capability SYS_RESOURCE to the

container. mdtmFTP server requires this capability to increase pipe capacity for the

splice feature when running as non-root.
o xxx:yyy is mdtmFTP container name.
o /bin/bash -c "cd /home/mdtmftp_server; ./mdtm-ftp-server -data-interface

131.225.2.29 -password-file passfile -p 5001 -c server.conf" executes several

commands within the container
▪ cd /home/mdtmftp_server enters mdtmFTP server working directory
▪ ./mdtm-ftp-server -data-interface 131.225.2.29 -password-file passfile -p 5001

-c server.conf" starts a mdtmFTP server

 15

Section 4. Configuring and Running mdtmFTP client

Step 1. Configuring mdtmFTP client

Running mdtmFTP client requires properly configuring mdtmconfig.xml.

1) First start a mdtmFTP docker container by running

“docker run –ti --net=host docker.io/wenji/mdtm:mdtmFTP”

This command will start the mdtmFTP container interactively. You can login the

container to edit/configure files.

2) In the container, following the instructions in Appendix 4 to edit mdtmconfig.xml.

3) Exit the mdtmFTP container.

4) In the host system, run “docker ps –a” to find container_id for the container that you

just exit.

5) In the host system, save the container changes by running “docker commit container_id

xxx:yyy”

Note: xxx is the local repository name, yyy is the tag name for the customized

mdtmFTP container.

 16

Step 2. Managing users for mdtmFTP client in Docker container environment

In standard environment (non-docker environment), when a user transfers files from/to a

mdtmFTP server, he must have an account on the system that mdtmFTP runs.

When mdtmFTP runs in Docker container environment, two sets of user account will be

involved – user account @ container and user account @ host. When a user is created into

a container, this user may not be known for host machines. At this moment, if a host volume

is mounted into this container, there may be “permission denied” issues.

To avoid such “permission denied” issues, we adopt 1-to-1 mapping policy between user

account @ container and user account @ host:

• For each user created in a container, we can set a dedicated uid

• For each group created in a container, we can set a dedicated gid

• On host, we can create a “docker” user with those dedicated uid/gid, and manage

permission.

Here is an example on how to setup an account in container and in host.

1) In the host, start the previously saved mdtmFTP docker container by running

“docker run –ti --net=host xxx:yyy”

This command will start the mdtmFTP container interactively.

2) In the container, add a user “mdtmftp” and a group “mdtmftp-group”. We will set

dedicated uid/gid.

groupadd mdtmftp-group –g 2000

useradd -u 2000 -d /home/mdtmftp --create-home --shell /bin/bash mdtmftp

usermod –g mdtmftp-group mdtmftp

3) Exit the mdtmFTP container.

4) In the host system, run “docker ps –a” to find container_id for the container that you

just exit.

5) In the host, save the container changes by running “docker commit container_id

xxx:yyy”

6) In the host, we create user “mdtmftp” and group “mdtmftp-group” with dedicated

uid/gid.

groupadd mdtmftp-group –g 2000

useradd -u 2000 -d /home/mdtmftp --create-home --shell /bin/bash mdtmftp

usermod -g mdtmftp-group mdtmftp

 17

 18

Step 3. Mounting host folders/directories to the mdtmFTP container

Data transfer requires folders/directories to hold and save data. In the Docker container

environments, we do not need to create large folders/directories within a container. Instead,

we can mount host directories/folders to the container. Because we implement a 1-to-1

mapping policy between user account @ container and user account @ host, we can simply

mount host folders/directories to the mdtmFTP container.

A user can add a data volume (i.e., folder/directory) to a container using the –v flag with

the docker run command. A user can use the –v multiple times to mount multiple data

volumes.

For example, the following command with start the mdtmFTP container, and mount host

folder /storage_x to container folder /storage_y

docker run -ti -v /storage_x:/storage_y --net=host xxx:yyy

Note: xxx:yyy is the mdtmFTP container that is customized to your DTN system.

 19

Step 4. Running a mdtmFTP client

a mdtmFTP client can run either as root, or no-root.

1) Start the previously saved mdtmFTP docker container by running

docker run -u mdtmftp -ti -v /storage_x:/storage_y --cap-add=IPC_LOCK --cap-add=SYS_NICE
--net=host xxx:yyy

This command will start the mdtmFTP container interactively

o –u mdtmftp runs mdtmFTP client as user mdtmftp

o -v /storage_x:/storage_y mounts host folder /storage_x to container folder

/storage_y.

o --net=host uses the host’s network stack inside the container.
o --cap-add=IPC_LOCK adds Linux capability IPC_LOCK to the container. It will

facilitate mdtmFTP client to lock memory to improve performance. This is optional

for mdtmFTP client.
o --cap-add=SYS_NICE adds Linux capability SYS_NICE to the container. It will

facilitate mdtmFTP client to bind I/O threads to improve performance. This is optional

for mdtmFTP client.
o xxx:yyy is mdtmFTP container name.
o --security-opt seccomp:unconfined is required for Docker 1.10 and 1.11 to add

capabilities.

2) Login the container, enter mdtmFTP client working directory

“cd /home/mdtmftp_client”

3) In the container, running mdtmFTP client to transfer files. Please refer to Appendix 5

for mdtmFTP client command syntax.

 20

Section 5. Data Transfer Examples

5.1 Client – Server data transfer

Step 1: Launch the server on DTN A

docker -v /storage_x:/storage_y --net=host xxx:yyy /bin/bash -c "cd /home/mdtmftp_server;
./mdtm-ftp-server -data-interface 131.225.2.29 -password-file passfile -p 5001 -c server.conf" &

Step 2: Launch the client on DTN B

Assuming the mdtmFTP client runs in a container.

Authentication method: user/password

Assuming user name/password: mdtmftp/123456

• Single file data transfer: transfer a single file from DTN A to DTN B

/home/wenji/mdtmftp/bin/mdtm-ftp-client -p 8

ftp://mdtmftp:123456@10.40.130.189:5001/storage/data1/testfiles/100G/file1

file:///storage/data1/tmp/

• Single file data transfer: transfer a single file from DTN B to DTN A

/home/wenji/mdtmftp/bin/mdtm-ftp-client -p 8

file:///storage/data1/tmp/file1
ftp://mdtmftp:123456@10.40.130.189:5001/storage/data1/tmp/

• Folder data transfer: transfer a Linux folder from DTN A to DTN B

/home/wenji/mdtmftp/bin/mdtm-ftp-client -p 8

ftp://mdtmftp:123456@10.40.130.189:5001/storage/data1/linux-3.18.21/
file:///storage/data1/tmp/

• Folder data transfer: transfer a Linux folder from DTN B to DTN A

/home/wenji/mdtmftp/bin/mdtm-ftp-client -p 8

file:///storage/data1/tmp/linux-3.18.21/

ftp://mdtmftp:123456@10.40.130.189:5001/storage/data1/tmp/

Authentication method: GSI certificate

• Single file data transfer: transfer a single file from DTN A to DTN B

ftp://mdtmftp:123456@10.40.130.189:5001/storage/data1/testfiles/100G/file1
/storage/data1/tmp/
/storage/data1/tmp/file1
ftp://mdtmftp:123456@10.40.130.189:5001/storage/data1/tmp/
ftp://mdtmftp:123456@10.40.130.189:5001/storage/data1/linux-3.18.21/
/storage/data1/tmp/
/storage/data1/tmp/linux-3.18.21/
ftp://mdtmftp:123456@10.40.130.189:5001/storage/data1/tmp/

 21

/home/wenji/mdtmftp/bin/mdtm-ftp-client -p 8
gsiftp://10.40.130.189:5001/storage/data1/testfiles/100G/file1 file:///storage/data1/tmp/

• Single file data transfer: transfer a single file from DTN B to DTN A

/home/wenji/mdtmftp/bin/mdtm-ftp-client -p 8
file:///storage/data1/tmp/file1 gsiftp://10.40.130.189:5001/storage/data1/tmp/

• Folder data transfer: transfer a Linux folder from DTN A to DTN B

/home/wenji/mdtmftp/bin/mdtm-ftp-client -p 8
gsiftp://10.40.130.189:5001/storage/data1/linux-3.18.21/ file:///storage/data1/tmp/

• Folder data transfer: transfer a Linux folder from DTN B to DTN A

/home/wenji/mdtmftp/bin/mdtm-ftp-client -p 8
file:///storage/data1/tmp/linux-3.18.21/ gsiftp://10.40.130.189:5001/storage/data1/tmp/

gsiftp://10.40.130.189:5001/storage/data1/testfiles/100G/file1
/storage/data1/tmp/
/storage/data1/tmp/file1
ftp://wenji:123456@10.40.130.189:5001/storage/data1/tmp/
ftp://wenji:123456@10.40.130.189:5001/storage/data1/linux-3.18.21/
/storage/data1/tmp/
/storage/data1/tmp/linux-3.18.21/
ftp://wenji:123456@10.40.130.189:5001/storage/data1/tmp/

 22

5.2 Third party data transfer between two remote DTNs

Step 1: Launch mdtmFTP server on DTN A

docker -v /storage_x:/storage_y --net=host xxx:yyy /bin/bash -c "cd /home/mdtmftp_server;

./mdtm-ftp-server -data-interface 131.225.2.29 -password-file passfile -p 5001 -c server.conf" &

Step 2: Launch mdtmFTP server on DTN B

docker -v /storage_x:/storage_y --net=host xxx:yyy /bin/bash -c "cd /home/mdtmftp_server;

./mdtm-ftp-server -data-interface 131.225.2.31 -password-file passfile -p 5001 -c server.conf" &

Step 3: Launch the client on DTN C

Assuming the mdtmFTP client runs in a container.

Authentication method: user/password

Assuming user name/password: mdtmftp/123456

• Single file data transfer: transfer a single file from DTN A to DTN B

/home/mdtmftp_client/mdtm-ftp-client -p 8 -vb

ftp://mdtmftp:123456@131.225.2.29:5001/storage/data1/testfiles/100G/file1
ftp://mdtmftp:123456@131.225.2.31:5001/storage/data1/tmp/

• Folder data transfer: transfer a Linux folder from DTN A to DTN B

/home/mdtmftp_client/mdtm-ftp-client -p 8 –vb
 ftp://mdtmftp:123456@131.225.2.29:5001/storage/data1/linux-3.18.21/

ftp://mdtmftp:123456@131.225.2.31:5001/storage/data1/tmp/

Authentication method: GSI certificate

• Single file data transfer: transfer a single file from DTN A to DTN B

/home/mdtmftp_client/mdtm-ftp-client -p 8 -vb

gsiftp://131.225.2.29:5001/storage/data1/testfiles/100G/file1
gsiftp://131.225.2.31:5001/storage/data1/tmp/

• Folder data transfer: transfer a Linux folder from DTN A to DTN B

/home/mdtmftp_client/mdtm-ftp-client -p 8 –vb

gsiftp://131.225.2.29:5001/storage/data1/linux-3.18.21/
 gsiftp://131.225.2.31:5001/storage/data1/tmp/

ftp://mdtmftp:123456@131.225.2.29:5001/storage/data1/testfiles/100G/file1
ftp://mdtmftp:123456@131.225.2.31:5001/storage/data1/tmp/
ftp://mdtmftp:123456@131.225.2.29:5001/storage/data1/linux-3.18.21/
ftp://mdtmftp:123456@131.225.2.31:5001/storage/data1/tmp/
ftp://wenji:123456@131.225.2.29:5001/storage/data1/testfiles/100G/file1
ftp://wenji:123456@131.225.2.31:5001/storage/data1/tmp/
ftp://wenji:123456@131.225.2.29:5001/storage/data1/linux-3.18.21/
ftp://wenji:123456@131.225.2.31:5001/storage/data1/tmp/

 23

Appendix 1 Configuring mdtmconfig.xml @ mdtmFTP server

mdtmconfig.xml configures a mdtmFTP server’s MDTM-related parameters. It should be

located at mdtmFTP server’s working directory.

mdtmconfig.xml consists of four sections: Topology, Online, Thread, and File section:

• Topology section. The syntax is defined as:

<Topology>

<Device type=Device_Type numa=Numa_ID>Device_Name</device>

…

</Topology>

Device_Type refers to MDTM device type. MDTM defines three types of devices:

network, block, and virtual.

o Network refers to a network I/O device.

o Block refers to a storage/disk I/O device.

o Virtual refers to a virtual device, which is defined particularly for mdtmFTP

server.

Numa_ID sets which NUMA node a device belongs to (i.e., NUMA location).

Device_Name specifies a device name.

MDTM middleware is typically able to detect physical I/O devices and their locations

(i.e., which NUMA node that a I/O device belongs to) on a NUMA system. However,

there are two cases that MDTM middleware cannot detect physical I/O devices or their

locations correctly:

o In a fully virtualized environment, where information on physical I/O devices

is not exposed to guest OS.

o Some vendors’ I/O devices may not comply to OS rules to expose device

information properly.

Under these conditions, system admin should manually configure I/O devices and their

NUMA locations.

Virtual device is defined particularly for mdtmFTP server to monitor data transfer

status. mdtmFTP server spawns a dedicated management thread to collect and record

data transfer statistics. The management thread is associated with a virtual device,

which will be pinned to a specified NUMA node.

• Online section. The syntax is defined as:

<Online>

<Device>Device_Name</Device>
…

 24

</Online>

This section specifies the I/O devices that are assigned for data transfer.

For example, assume a DTN has the following I/O devices:

o Ethernet NIC devices

▪ eth0 – configured for management access

▪ eth1 – configured for WAN data transfer

o Block I/O devices

▪ /dev/sda – system disk

▪ /dev/sdb – data repository for WAN data transfer

In this case, the online section would be defined as

<Online>

<Device>eth1</Device>

<Device>sdb</Device>

</Online>

➢ For network I/O devices, a user can run ifconfig to list network I/O devices available

on the system.

➢ For storage/disk IO devices, a user can run lsblk to list storage/disk I/O devices

available on the system; and then run df to find out on which storage/disk I/O

devices that a data transfer folder will be located.

Assuming, a DTN system’s lsblk output is:

[root@bde1 ~]# lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 1.8T 0 disk

├─sda1 8:1 0 500M 0 part /boot

└─sda2 8:2 0 1.8T 0 part

 ├─scientific_bde1-root 253:0 0 50G 0 lvm /

 ├─scientific_bde1-swap 253:1 0 4G 0 lvm [SWAP]

 └─scientific_bde1-home 253:2 0 1.8T 0 lvm /home

loop0 7:0 0 100G 0 loop

└─docker-253:0-203522131-pool 253:3 0 100G 0 dm

loop1 7:1 0 2G 0 loop

└─docker-253:0-203522131-pool 253:3 0 100G 0 dm

nvme0n1 259:0 0 1.1T 0 disk /data1

 25

And the df output is:

[root@bde1 ~]# df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/mapper/scientific_bde1-root 52403200 15999428 36403772 31% /

devtmpfs 65855232 0 65855232 0% /dev

/dev/nvme0n1 1153584388 104952744 990009612 10% /data1

/dev/mapper/scientific_bde1-home 1895386900 23602284 1871784616 2% /home

/dev/sda1 508588 376264 132324 74% /boot

 If “/data1” is used as data transfer folder, the corresponding storage/disk I/O device

is “nvme0n1”.

• Thread section. The syntax is defined as:

<Threads threads=Default_Num>

 <Device type=Device_Type threads=Num>Device_Name</Device>

 …

</Threads>

This section defines the number of threads that needs to be allocated for an I/O device.

The number of threads allocated for an I/O device should be proportional to the

device’s I/O bandwidth. The rule of thumb is that a thread can handle an I/O rate of

10Gbps. For example, four threads should be allocated for a 40GE NIC while one

thread be allocated for a 10GE NIC.

Default_Num sets the default number of threads allocated for each I/O device.

If a different number of threads should be allocated for a particular I/O device, a

separate entry for the device should to be specified here.

A virtual device should be allocated with 1 thread.

• File section. The syntax is defined as:

<File segment=File_Size_Threshold>

</File>

MDTM splits a large file into segments, which are spread to different threads for disk

and network operations to increase performance.

File_Size_Threshold sets a file size threshold. A file with a size that exceeds the

threshold will be split into multiple segments, which are spread across I/O threads to

be transferred in parallel.

 26

 27

Here is a sample mdtmconfig.xml file for mdtmFTP server:

<?xml version="1.0" standalone="no" ?>

<Topology>
 <Device type="Virtual" numa="1">man</Device>

 <Device type="Network" numa="0">eth40.4020</Device>
</Topology>

<Online>

 <Device>eth40.4020</Device>
 <Device>sda</Device>

 <Device>man</Device>
</Online>

<Threads threads="1">

 <Device type="Network" threads="2">eth40.4020</Device>
 <Device type="Block" threads="2">sda</Device>

 <Device type="Virtual" threads="1">man</Device>

</Threads>

<File segment="2G">

</File>

 28

Appendix 2. Configuring server.conf @ mdtmFTP server

server.conf configures a mdtmFTP server’s operation parameters.

• blocksize sets the block size for disk I/O operations. The block size should be 4K or multiple

of 4k (e.g. 4M).

• direct is a flag to enable or disable direct I/O. When direct I/O is enabled, file reads and

writes go directly from mdtmFTP to the storage device(s), bypassing the operating

system read and write caches. For bulk data transfer, enabling direct I/O would improve

performance.

• splice is a flag to enable or disable zero-copy by using the Linux splice mechanism.

Note, splice is an experimental feature that may not function well in some systems.

You can turn this feature off by setting splice to 0.

• monitor is a flag to enable or disable MDTM monitoring

Here is a sample server.conf file:

blocksize 4194304
direct 1

splice 0
monitor 0

 29

Appendix 3 mdtmFTP server command syntax

mdtmFTP server command syntax:

mdtm-ftp-server -data-interface <ip_address> -password-file <passwd_file> -p <port_num> -c

<server.conf>

Command line options:

-data-interface <ip_address> Specifies a server’s IP interface for data transfer

-password-file <passwd_file>

Specifies a password file to authenticate users. You can use

Globus tools to create a password file. If GSI certificate

security is configured, you need not create a password file
to authenticate users.

-p <port_num> Specifies the port that mdtmFTP server listens on

-c <server.conf> Specifies a configuration file to set data transfer parameters

 30

Appendix 4 Configuring mdtmconfig.xml @ mdtmFTP Client

Running mdtmFTP client requires properly configuring mdtmconfig.xml, which configures

a mdtmFTP client’s parameters. This file must be put in the working directory.

mdtmFTP client’s configuration is similar to that of mdtmFTP server (Appendix 3), except

that mdtmFTP client does not need to configure a virtual device.

Here is a sample mdtmconfig.xml file:

<?xml version="1.0" standalone="no" ?>

<Topology>

 <Device type="Network" numa="1">eth40.4012</Device>
</Topology>

<Online>

 <Device>eth40.4012</Device>

 <Device>sda</Device>

</Online>
<Threads threads="1">

 <Device type="Network" threads="2">eth40.4012</Device>
 <Device type="Block" threads="2">sda</Device>

</Threads>
<File segment="10G">

</File>

 31

Appendix 5 mdtmFTP client command syntax

mdtmFTP client command syntax:

mdtm-ftp-client -p <parallelism> -splice src_url dst_url

Command line options:

-p <parallelism> Specifies the number of parallel data streams

-splice Turn on the splice feature

src_url Specifies the URL of data source

dst_url Specifies the URL of data destination

