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MULTICORE DATA TRANSFER MIDDLEWARE

Problem Space

Multicore/manycore has become the norm for high-performance computing. However, existing data
movement tools are still limited by major inefficiencies when run on multicore systems:

e Existing data transfer tools can’t fully exploit multicore hardware, especially on NUMA systems
* Disconnect between software and multicore hardware renders network 1/0 processing inefficient
* Performance gaps between disk and network devices difficult to narrow on NUMA systems

* Data transfer tools receive only best-effort handling for their process threads

These inefficiencies will ultimately result in performance bottlenecks on end systems. Such
bottlenecks also impede the effective use of advanced high-bandwidth networks

Our Solution: The Multicore-aware Data Transfer Middleware (MDTM) Project:

* Collaborative effort by Fermilab and Brookhaven National Laboratory

* Funded by DOE’s Office of Advanced Scientific Computing Research (ASCR)

MDTM aims to accelerate data movement toolkits on multicore systems

MDTM Architecture

MDTM consists of two components:

* MDTM data transfer applications (client or server) - adopts an 1I/O-centric architecture that uses
dedicated threads to perform network and disk I/O operations

* MDTM middleware service - harness multicore parallelism to scale data movement toolkits on host
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MULTICORE DATA TRANSFER MIDDLEWARE

How does MDTM work?

An MDTM application spawns three types of threads:

* Management threads to handle user requests and management-related functions
* Dedicated disk/storage 1/0 threads to read/write from/to disks/storages
* Dedicated network I/O threads to send/receive data
An MDTM data transfer application accesses MDTM middleware services explicitly via APIs.
In operation, an MDTM middleware daemon will be launched. It will support two types of services
* Query service allows MIDTM APP to access system configuration and status

* Scheduling service assigns system resources based on requirements of data transfer application(s)
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Initial Results (Year-1 prototype)

Test environment: 2 HPC servers connected at 40GE
MdtmApp server — 8 parallel groups of network/storage threats
GridFTP server - 8 parallel, independent instances of GridFTP
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