2= Fermilab

L. Zhang P. DeMar, W. Wu (PI)
Fermilab

Multicore-aware Data Transfer Middleware (MDTM)

) ENERGY
T. Li, Y. Ren, S. Jin, D. Yu (Co-PI)
BNL

Enhancing Big Data Science Through Optimization of Network I/O on Multicore Systems

MULTICORE DATA TRANSFER MIDDLEWARE

Problem Space

Multicore/manycore has become the norm for high-performance computing. However, existing data
movement tools are still limited by major inefficiencies when run on multicore systems:

e Existing data transfer tools can’t fully exploit multicore hardware, especially on NUMA systems
* Disconnect between software and multicore hardware renders network 1/0 processing inefficient
* Performance gaps between disk and network devices difficult to narrow on NUMA systems

* Data transfer tools receive only best-effort handling for their process threads

These inefficiencies will ultimately result in performance bottlenecks on end systems. Such
bottlenecks also impede the effective use of advanced high-bandwidth networks

Our Solution: The Multicore-aware Data Transfer Middleware (MDTM) Project:

* Collaborative effort by Fermilab and Brookhaven National Laboratory

* Funded by DOE’s Office of Advanced Scientific Computing Research (ASCR)

MDTM aims to accelerate data movement toolkits on multicore systems

MDTM Architecture

MDTM consists of two components:

* MDTM data transfer applications (client or server) - adopts an 1I/O-centric architecture that uses
dedicated threads to perform network and disk I/O operations

* MDTM middleware service - harness multicore parallelism to scale data movement toolkits on host

systems _
MDTM Architecture MDTM Data Transfer Model
o -
rccoss E ﬁ Access services i) j+ E ié —Jé i
services . -------- i ¢ Buffers ¢ l i ¢ Buffers ¢
1y’ ﬁ Access services Lé_ | _@ .
OS Services Disk/Storage NICs NICs Disk/Storage
Hardware
Networks
MDTM Software Logical Functions and Modules
Data Transfer Application) * Data transfer application’s native functions
i Data 'Tra.nsf'er ' User Interface E . .
0 S Appticiots Nt » Data transfer service interface
- ;::"":"":Z%:"":"":""""""""": .
/O-centric architecture [— ' * Request/data preprocessing
i Data Transfer $
Parallel data transfer Funcions & Modules ‘ * Thread/flow management
: Tresieenr 18| * Data access and transmission
. —r 11 T I * App interface
Data flow-centric scheduling v : ‘ m' : o
NUMA-awareness scheduling | s Je— o System profiling and monitoring
1/0 locality optimization S : ; wmnweion * Thread load estimation
M . o " I. Resource‘Scheduler <-> System‘Monitor ® Resource SCh e dul er
aximizing parallelism ————— _ +~ .
(;S Kernel (and hardware below) * QOS/POI |Cy ma nager

MULTICORE DATA TRANSFER MIDDLEWARE

How does MDTM work?

An MDTM application spawns three types of threads:

* Management threads to handle user requests and management-related functions
* Dedicated disk/storage 1/0 threads to read/write from/to disks/storages
* Dedicated network I/O threads to send/receive data
An MDTM data transfer application accesses MDTM middleware services explicitly via APIs.
In operation, an MDTM middleware daemon will be launched. It will support two types of services
* Query service allows MIDTM APP to access system configuration and status

* Scheduling service assigns system resources based on requirements of data transfer application(s)

MDTM App Preprocessing module MDTM IPC design MDTM Middleware Scheduling
Key techniques: L R * The data can be static like System
D icati Raw requests " Metedata access Layout, which is published once a CPUs/
ata Transfer Applications/Servers q B : _ App. App. yout, p
HEER ol it e o oy e for and the APIs can retrieve it by Cores
e o aag ystem calling the synchronous read
Storage I/O interface: A Request/data preprocessing I |+ Obtain knowledge on system function.

MDTM for layout
* Data structures: lists, sets, layout

case: polling and async reading:

— Polling: use synchronous read
function many times in case of data
changes.

Publish once Publish dynamically ~ — Asynchronous Reading: register the

event of data change; upon event Devices
MDTM Daemon pccur, calling callback function to . Connection between devices
1 invoke a read.

table, various statistics
. Communication: none

NICs, Disks

) Local disks, b) SAN, | .7 : — MDTM
o) parallel Fs(Lustre) . 'u La.:m"t (cores, d's';s' N'ICS’ de“) The data can be dynamic like Core PCl Hubs/
® lie grouping, sortng, iloa . . .
00O balancing - 8 _ Slling or Workload, which is published Bridges..
T A S * Interface: file systems, storage, Sync Readiag Asyireading Periodically. Our implementation
1ared Memo provide two ways to handling this
e

MDTM deployment scenarios: == = P oo T MDTM server works with a standard FTP client
MDTM Client — Server data transfer [el l il Cllent — Server Operations [~ p e
0s ””“‘“éﬁ:;:{*"' sl . I
- | m +.-----L- --------- > - L IFFE' | ‘k\ rf - -- Muitimr; s¥ELemm {::méﬂ
DT DM iro annel .i‘ . #. Conitrol chanmnel - b
MDTM thirty party data transfer

Initial Results (Year-1 prototype)

Test environment: 2 HPC servers connected at 40GE
MdtmApp server — 8 parallel groups of network/storage threats
GridFTP server - 8 parallel, independent instances of GridFTP

Throughput FTP CPU Consumption
srv365-09.cewlt. stonybrook.edu Network last hour srv365-11.cewit.stonybrook.edu CPU last hour
5.06% 100 4
£ GridF TP %
128KB 512KB I\MB 4MB S\MB B Gn
4.00G '\‘ 'L [] mdétmApp 80
70 :
3.5 6 WW Data Sink (Server)
60
u 3.06 . P\ =
" =) M v 50
@ 2,56 o
v 40
® 2,06
‘ 30
1.5 G
1 20
1.0 G ? -
0.5 G 0
L[’] 09:50 10: 00 10:10 10: 20 10: 30 10:40
0.0 _J » W User Now: O0.0% Min: 0.08 Avg: 0.2% Max: 1.%
09:50 10: 00 10: 10 10: 20 10:30 10:40 O Nice Now: ©0.0%8 Min: 0.08 Avg: 0.08 Max: 0.0%
M In Now:469.2 Min:341.4 Avg:366.3k Max: 3.6M E,ﬁ;ﬁe"‘:z ORI RR0: T g:gf pr il
. Out Now:228.9 Min:215.0 AVg: 1.1G Max: 4.26 0O Idle Now: 99.9% Min: 80.7% Avg: 95.0% Max:100.0%

