

mdtmGUI

Installation & Configuration Manual
- Docker Release

Version 1.0.1

By Fermilab Network Research Group

Oct 2016

	 2	

About

DOE’s Advanced Scientific Computing Research (ASCR) office has funded Fermilab
and Brookhaven National Laboratory to collaboratively work on the Multicore-Aware
Data Transfer Middleware (MDTM) project (http://mdtm.fnal.gov). MDTM aims to
accelerate data movement toolkits on multicore systems.

The MDTM research team has released several MDTM-related software packages –
mdtmFTP, mdtmBBCP, mdtmGUI, and MDTM middleware
(http://mdtm.fnal.gov/Releases.html).

• mdtmFTP and mdtmBBCP. mdtmFTP and mdtmBBCP are two MDTM-based
data transfer tools. Both tools adopt an I/O-centric architecture, and use MDTM
middleware to fully utilize the underlying multicore system.

• MDTM middleware. The middleware will hardness multicore parallelism to scale
data movement toolkits on Data Transfer Nodes (DTNs). It schedules and assigns
system resources based on the needs and requirements of data transfer
applications (i.e., data transfer-centric scheduling). It also takes into account
other factors, including NUMA topology, I/O locality, and QoS.

• mdtmGUI. mdtmGUI is a web-based DTN monitoring tool. It is able to provide
online & real-time monitoring of DTN system status and configurations, online &
real-time monitoring of data transfer status and progress, and online & real-time
monitoring of the MDTM-based data transfer tool’s status and configuration.

mdtmFTP,	 MDTM	 middleware,	 and	 mdtmGUI	 are	 researched,	 designed,	 and	
developed	by	Fermilab	network	research	group.		
	
mdtmBBCP	is	designed,	and	developed	by	BNL	Computational	Science	Center.

This document describes the installation and basic use of mdtmGUI.

mdtmGUI is developed by Lauri Loebel Carpenter (lauri@fnal.gov).

The MDTM project PI is Dr. Wenji Wu (wenji@fnal.gov).

Intended Audience

This manual is intended for users and system administrators responsible for installing,
running, and managing DTNs.

The manual assumes familiarity with multicore and DTN concepts.

	 3	

System level requirements
1) System must have installed Docker (version 1.10 +). The Docker project website is

available at http://www.docker.com. For some Linux distributions, you can install
Docker packages through yum or apt-get.

2) Download and install mdtmGUI Docker package

o The mdtmGUI Docker repository: https://hub.docker.com/r/wenji/mdtm

o Download mdtmGUI container:
o “docker pull docker.io/wenji/mdtm:mdtmgui” (for normal users)
o “docker pull docker.io/wenji/mdtmgui-ESnet” (for ESnet users)

o Run “docker images” to check the container that you have pulled

	 4	

Running the mdtmGUI container

1) On a system, start mdtmGUI by running

“docker run –net=host –ti docker.io/wenji/mdtmgui”.

This command will start the mdtmGUI container interactively. You can login the
container to launch applications, or edit/configure files.

Within the container, mdtmGUI is located at folder “/home/mdtmgui”

To automatically start mdtmGUI, the following lines of commands have been
added to “/etc/bash.bashrc” (in the mdtmGUI container). Therefore, once the
container is started, mdtmGUI will be automatically launched.

/usr/bin/monitorix -c /etc/monitorix/monitorix.conf -p /var/run/monitorix.pid;
cd /home/mdtmgui;
forever start app.js --port 8080;

In the container, you can stop mdtmGUI by running

forever stop 0

Or relaunch mdtmGUI by running

cd /home/mdtmgui;
forever start app.js –port 8080;

Note: 8080 is mdtmGUI listening port, which is configurable

2) On another system, run http://mdtmgui-server-ip:8080 to check if mdtmGUI is

launched successfully. A successfully launched mdtmGUI is shown as in Figure 1.
Note: please let mdtmGUI run for several minutes to collect data.

Figure 1 a successfully launched mdtmGUI

	 5	

If not, please check whether your system firewall, network firewall, or mdtmGUI port
number is correctly configured.

3) If mdtmGUI is successfully launched, congratulation! However, the configuration
task is only partially completed. You will notice that mdtmGUI’s “Network Traffic”,
and “Filesystem Activity” pages are data empty (Figure 2 and 3) because no network
interface cards and file systems have been configured for it. Because each system
typically has system-specific hardware configurations, a mdtmGUI system requires
customized configurations.

Figure 2 Empty Network Traffic Page

Figure 3 Empty Filesystem Activity Page

The system-specific configurations for mdtmGUI represent in two aspects: NICs or
file systems. Please follow the following instructions:

	 6	

a) NIC configuration. The mdtmGUI container runs in “host” network mode. It

uses the host’s network stack, and sees all NICs.
o Login to the mdtmGUI container.
o “vi /etc/monitorix/monitorix.conf.”
o Edit the “NET graph” section, add the NICs that you want to monitor.

Please refer to http://www.monitorix.org/documetation.html on how to
edit monitorix.conf.

b) File system configuration.

o Login to the mdtmGUI container
o Mount particular storage/file systems to the mdtmGUI container. You can

put the mount scripts in “/etc/bash.bashrc” to automate the process.
Therefore, when the container is launched, file systems will be
automatically mounted.

o “vi /etc/monitoirx/monitorix.conf”
o Edit the “FS graph” section, add the file systems that you want to monitor.

Please refer to http://www.monitorix.org/documentation.html on how to
edit monitorix.conf

c) In the container, restart the Monitorix by running “/etc/init.d/monitorix

restart”

d) In the container, restart mdtmGUI

e) On another system, run http://mdtmgui-server-ip:8080 to check if mdtmGUI is
launched successfully. Make sure that the “Network Traffic”, and “Filesystem
Activity” pages are not empty. If yes, congratulation! You are almost done. If
not, go back to check whether file systems, or monitoirx is correctly mounted,
or configured.

4) You have made system-specific configurations for mdtmGUI. You want to save the

changes.
o Exit the mdtmGUI container
o In the host system, run “docker ps –a” to find container_id for the container

that you just exit.
o Save the container changes by running “docker commit container_id xxx:yyy”

Note: xxx is the repository name, yyy is the tag name for the customized
mdtmGUI container that is specific to your DTN system.

5) On the mdtmGUI server, start the mdtmGUI by running

“docker run –t --net=host xxx:yyy &”.

This command will start the customized mdtmGUI container in the background.

	 7	

Running modes

mdtmGUI is designed and developed for MDTM-enabled DTNs. However, it can also be
deployed to monitor and manage any networked computer systems.

An MDTM-enabled DTN is a DTN that runs an MDTM-based data transfer tool (e.g.,
mdtmFTP), along with MDTM middleware.

For an MDTM-enabled DTN, mdtmGUI provides a full set of functions:

• Online & real-time monitoring of system status and configurations
• Online & real-time monitoring of data transfer status and progress.

When mdtmGUI is deployed to monitor a Non-MDTM-enabled computer system, it
provides a reduced set of functions:

• Online and real-time monitoring of system status and configurations.

	 8	

mdtmGUI CODE ORGANIZATION

• mdtmConfig.js

This is the main configuration file, needs to be edited and then the server restarted.
Lots of things are configured in here -- the colors to use, the number of "cores" to
show on each plot on the "System> CPU Load" page, the paths to the CSV files that
are written by the MDTM software for data transfer statistics, etc. The default
mdtmConfig.js should be fairly self-explanatory, with full examples indicating
required syntax, etc.

When mdtmGUI runs, the “Configuration -> User Config" and “Configuration->Full
Configuration” tabs show the contents of the configuration file.

When mdtmGUI is deployed to monitor and manage non-mdtm-enabled computer
systems, all MDTM features should be disabled by setting
“$MDTM_MONITORING_ENABLED” to “false”.

• api/controllers/

o MainController: handle the "index.ejs" front-page web requests
o AjaxController: handle the main "nav panel" web requests
o RrdController: handle the ajax callbacks related to obtaining monitorix

“rrd fetch” data
o SnapshotController: handle "the rest" of the ajax callbacks, which

generally get a “snapshot" of "how some command output looks right
now”

• api/services/

o mdtmConfigService: called during startup, this builds a $CONFIG data
structure of All Known Static Data (including the $USER_CONFIG
information from the mdtmConfig.js file, and parsing the output of several
other commands to obtain static information such as hardware, memory,
colors to use, etc.).

xxx.js: naming convention should make it fairly clear what each of the files in
this area do.

• assets/

o Javascript source code/scripts, css style sheets, images, jQuery packages,
etc.

• views/

o main/index.index.ejs - the "front page".
o ajax/*.ejs - the "container" template for individual pages.
o ajax/templates/*.ejs - the individual templates sucked into each

"container".

	 9	

Feedbacks

If you encounter any problems when installing, configuring, and running mdtmGUI,
please send emails to Dr. Wenji Wu (wenji@fnal.gov).

